博客
关于我
ndarray 比 recarray 访问快吗?
阅读量:794 次
发布时间:2023-02-14

本文共 1155 字,大约阅读时间需要 3 分钟。

在Python中,numpy库提供了两种主要的数据结构:ndarray(多维数组)和recarray(记录数组)。关于它们的访问速度,有一种常见的误解需要澄清:尽管ndarray通常被认为比recarray访问速度更快,但这种差异在实际应用中往往不会显著影响到日常编程任务。

对于性能比较,建议采用以下方法进行测试。首先,您可以使用%timeit宏来测量代码片段的执行时间。要做到这一点,需要先启用IPython的魔术命令行功能:

%load_ext line_profiler

接下来,使用%timeit来测试两个版本(ndarrayrecarray)的性能。以下是一个示例:

import numpy as np
# 创建一个100万元素的多维数组data = np.random.rand(int(1e7), 3)
def access_ndarray():    return data[0, 0]
def access_recarray():    return data[0][0]  # 如果是recarray的话,这里会因为字典查找而变慢
%timeit -n100 -r3 access_ndarray()%timeit -n100 -r3 access_recarray()

此外,您还可以使用line_profiler库来详细分析每行代码的执行时间。安装步骤如下:

!pip install line_profiler

然后,使用以下代码进行测试:

%load_ext line_profiler@profiledef access_ndarray():    return data[0, 0]@profiledef access_recarray():    return data[0][0]  # 如果是recarray的话,这里会因为字典查找而变慢access_ndarray()access_recarray()

在实际应用中,如果您的任务需要频繁访问多维数据,建议优先考虑使用ndarray而不是recarray。NumPy提供的高性能数组操作功能可以显著提升您的工作效率。以下是一个使用ndarray的示例:

import numpy as np
# 创建一个随机的多维数组data = np.random.rand(100, 100)
# 使用切片访问元素element = data[0, 0]  # 直接通过索引访问
# 更新元素的值data[0, 0] = 10
# 进行矩阵运算result = np.dot(data, data)

对于处理大量数据的任务,如果内存使用量较大且需要频繁进行计算,使用NumPy会比使用Python的数据结构(如列表)要更高效。

转载地址:http://hycfk.baihongyu.com/

你可能感兴趣的文章
Ncast盈可视 高清智能录播系统 IPSetup.php信息泄露+RCE漏洞复现(CVE-2024-0305)
查看>>
NCNN中的模型量化解决方案:源码阅读和原理解析
查看>>
NCNN源码学习(1):Mat详解
查看>>
nc命令详解
查看>>
NC综合漏洞利用工具
查看>>
ndarray 比 recarray 访问快吗?
查看>>
ndk-cmake
查看>>
NdkBootPicker 使用与安装指南
查看>>
ndk特定版本下载
查看>>
NDK编译错误expected specifier-qualifier-list before...
查看>>
Neat Stuff to Do in List Controls Using Custom Draw
查看>>
Necurs僵尸网络攻击美国金融机构 利用Trickbot银行木马窃取账户信息和欺诈
查看>>
Needle in a haystack: efficient storage of billions of photos 【转】
查看>>
NeHe OpenGL教程 07 纹理过滤、应用光照
查看>>
NeHe OpenGL教程 第四十四课:3D光晕
查看>>
Neighbor2Neighbor 开源项目教程
查看>>
neo4j图形数据库Java应用
查看>>
Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013
查看>>
Neo4j图数据库的介绍_图数据库结构_节点_关系_属性_数据---Neo4j图数据库工作笔记0001
查看>>
Neo4j图数据库的数据模型_包括节点_属性_数据_关系---Neo4j图数据库工作笔记0002
查看>>