博客
关于我
ndarray 比 recarray 访问快吗?
阅读量:792 次
发布时间:2023-02-14

本文共 1155 字,大约阅读时间需要 3 分钟。

在Python中,numpy库提供了两种主要的数据结构:ndarray(多维数组)和recarray(记录数组)。关于它们的访问速度,有一种常见的误解需要澄清:尽管ndarray通常被认为比recarray访问速度更快,但这种差异在实际应用中往往不会显著影响到日常编程任务。

对于性能比较,建议采用以下方法进行测试。首先,您可以使用%timeit宏来测量代码片段的执行时间。要做到这一点,需要先启用IPython的魔术命令行功能:

%load_ext line_profiler

接下来,使用%timeit来测试两个版本(ndarrayrecarray)的性能。以下是一个示例:

import numpy as np
# 创建一个100万元素的多维数组data = np.random.rand(int(1e7), 3)
def access_ndarray():    return data[0, 0]
def access_recarray():    return data[0][0]  # 如果是recarray的话,这里会因为字典查找而变慢
%timeit -n100 -r3 access_ndarray()%timeit -n100 -r3 access_recarray()

此外,您还可以使用line_profiler库来详细分析每行代码的执行时间。安装步骤如下:

!pip install line_profiler

然后,使用以下代码进行测试:

%load_ext line_profiler@profiledef access_ndarray():    return data[0, 0]@profiledef access_recarray():    return data[0][0]  # 如果是recarray的话,这里会因为字典查找而变慢access_ndarray()access_recarray()

在实际应用中,如果您的任务需要频繁访问多维数据,建议优先考虑使用ndarray而不是recarray。NumPy提供的高性能数组操作功能可以显著提升您的工作效率。以下是一个使用ndarray的示例:

import numpy as np
# 创建一个随机的多维数组data = np.random.rand(100, 100)
# 使用切片访问元素element = data[0, 0]  # 直接通过索引访问
# 更新元素的值data[0, 0] = 10
# 进行矩阵运算result = np.dot(data, data)

对于处理大量数据的任务,如果内存使用量较大且需要频繁进行计算,使用NumPy会比使用Python的数据结构(如列表)要更高效。

转载地址:http://hycfk.baihongyu.com/

你可能感兴趣的文章
Nash:轻量级、安全且可靠的脚本语言
查看>>
NAS、SAN和DAS的区别
查看>>
NAS个人云存储服务器搭建
查看>>
NAS服务器有哪些优势
查看>>
NAT PAT故障排除实战指南:从原理到技巧的深度探索
查看>>
nat 网卡间数据包转发_你是不是从来没有了解过光纤网卡,它跟普通网卡有什么区别?...
查看>>
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,快解析DDNS的优势
查看>>
NAT-DDNS内网穿透技术,解决动态域名解析难题
查看>>
natapp搭建外网服务器
查看>>
NativePHP:使用PHP构建跨平台桌面应用的新框架
查看>>
nativescript(angular2)——ListView组件
查看>>
NativeWindow_01
查看>>
Native方式运行Fabric(非Docker方式)
查看>>
Nature | 电子学“超构器件”, 从零基础到精通,收藏这篇就够了!
查看>>
Nature和Science同时报道,新疆出土四千年前遗骸完成DNA测序,证实并非移民而是土著...
查看>>
Nature封面:只低一毫米,时间也会变慢!叶军团队首次在毫米尺度验证广义相对论...
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
Nat、端口映射、内网穿透有什么区别?
查看>>
nat打洞原理和实现
查看>>